Exercise 27

Solve the boundary-value problem, if possible.

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0, \quad y(0)=2, \quad y(1)=0
$$

Solution

This is a linear homogeneous ODE with constant coefficients, so its solutions are of the form $y=e^{r x}$.

$$
y=e^{r x} \quad \rightarrow \quad y^{\prime}=r e^{r x} \quad \rightarrow \quad y^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into the ODE.

$$
r^{2} e^{r x}+4\left(r e^{r x}\right)+4\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}+4 r+4=0
$$

Solve for r.

$$
\begin{gathered}
(r+2)^{2}=0 \\
r=\{-2\}
\end{gathered}
$$

Two solutions to the ODE are $e^{-2 x}$ and $x e^{-2 x}$. By the principle of superposition, then,

$$
y(x)=C_{1} e^{-2 x}+C_{2} x e^{-2 x} .
$$

Apply the boundary conditions to determine C_{1} and C_{2}.

$$
\begin{aligned}
& y(0)=C_{1}=2 \\
& y(1)=C_{1} e^{-2}+C_{2} e^{-2}=0
\end{aligned}
$$

Solving this system of equations yields $C_{1}=2$ and $C_{2}=-2$. Therefore, the solution to the boundary value problem is

$$
\begin{aligned}
y(x) & =2 e^{-2 x}-2 x e^{-2 x} \\
& =2(1-x) e^{-2 x} .
\end{aligned}
$$

Below is a graph of $y(x)$ versus x.

